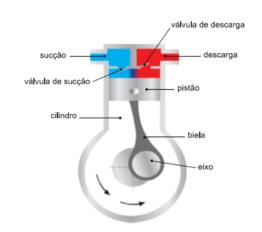
Parte 08

1. Produtividade no jateamento (Parte A)

A produtividade no jateamento está ligado as máquinas, equipamentos e dispositivos com suas inovações tecnológicas e manutenção para o seu pleno funcionamento. Tratativas, posturas e treinamento constante do pessoal envolvido incluindo a liderança, tem a fundamental influência na questão da produtividade dessa atividade.

a. Tipo de Compressor


O que se espera de um compressor de ar, é que trabalhe muito, não falhe e funcione por dez ou vinte anos, pelo menos. Se a tecnologia do compressor for do tipo de parafuso, isso é perfeitamente possível, pois se trata de um equipamento próprio para o serviço industrial pesado, com grande confiabilidade e baixo índice de manutenção.

O compressor de parafuso difere do compressor de pistão em diferentes quesitos, predominando a eficiência energética e a capacidade de operar continuamente em plena carga.

Este fato fez com que, os compressores de parafuso ocupassem de uma vez por todas o lugar dos compressores de pistão na geração de ar comprimido industrial. Atualmente, os compressores de pistão quase não existem para potências acima de 15 hp. Nas potências menores, o compressor de parafuso vem conquistando espaço cada vez mais, devidos os custos cada vez menores.

Compressor de pistão

Compressor de parafuso

b. Vazão do ar

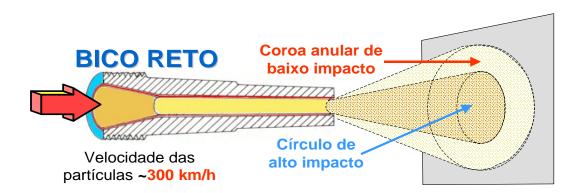
A vazão do ar é uma grandeza ligada diretamente à potência do motor do compressor de ar, a unidade mais usada é a PCM (pés cúbicos por minuto), que é uma unidade de volume dividida por unidade de tempo.

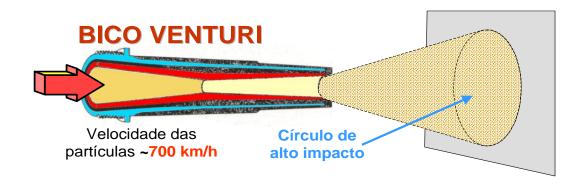
Analogicamente, poderíamos comparar em um rio a sua vazão, sendo, a quantidade de litros de água que passam por hora.

Portanto a característica principal vazão de ar de um compressor é a sua capacidade de produção de ar, na prática o motor que sua potência é medida em CV (cavalo vapor) ou HP (horse power), tem essa relação com a vazão:

PCM = pés cúbicos por minuto (1 PCM equivale à 4 a 5 HP)

E por sua vez a vazão, que mede o consumo de ar, está ligado também ao diâmetro interno do bico de jateamento. E assim chegamos à uma produtividade em área, expressa em metros quadrados por hora (M2/h), conforme tabela abaixo, mesmo que teórica.


Teórica porque a produtividade no jateamento depende ainda de outros fatores, que iremos abordar a seguir.


Diâmetro interno do bico		Rendimento	Consumo do ar	Consumo de abrasivo	Potência do motor
Pol.	mm	M2/h	PCM	Kg/h	HP
1/4"	6,4	10	81	224	17
5/16"	8,0	15	137	368	29
3/8"	9,6	20	196	524	41
7/16"	11,2	30	254	720	53
1/2"	12,7	40	338	920	70

c. Bico de jateamento

Portanto como vimos a última tabela, o diâmetro interno do bico nos dá uma produtividade em metros quadrados por hora de área de jateamento. Os bicos são fabricados nos formatos reto e venturi, o diferencial está na área de impacto do abrasivo.

Conforme desenho abaixo nota se que no bico reto existe uma coroa anular debaixo impacto e no bico venturi essa coroa não existe, e também a velocidade das partículas passam de 300 Km/h, do bico reto para 700 Km/h do bico venturi.

Produtividade do bico venturi

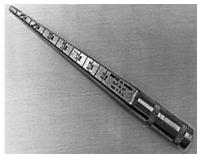
Abaixo nota-se a produtividade em área do bico venturi, necessariamente a vazão do compressor deve ser aumentada também, conforme tabela anterior para se alcançar essa produtividade da tabela abaixo:

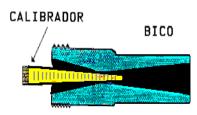
BICO DE JATEAMENTO

Durabilidade do bico de jateamento

Existem vários materiais que são fabricados os bicos de jateamento, visto que seu desgaste é devido ao atrito que tem com o abrasivo passando por ele. Devem ser evitadas batidas fortes nos bicos, que são fabricados de materiais duros mas quebram-se facilmente.

Abaixo uma tabela de vida útil dos bicos de jateamento referente ao seu material e o abrasivo usado:


	AREIA		GRANALHA	
	Horas	Dias (6 h)	Horas	Dias (6 h)
Carbeto de boro	750 a 1000	125 a 166	>2000	>330
Carbeto de tungstênio	250 a 300	41 a 50	700 a 800	116 a 133
Ferro fundido	6 a 8	1 a 2	15 a 20	2 a 3
Cerâmica	1 a 2	<1	3 a 5	<1


Desgaste do bico

O desgaste do diâmetro interno do bico de jateamento, conforme vimos anteriormente (tabela de vazão do ar), faz com que a produção em metros quadrado por hora diminua sensivelmente, portanto é necessário fazer seu acompanhamento periodicamente, existem calibres para medir esse desgaste, como as fotos

abaixo. Mas também é possível fazer essa medição com uma régua milimetrada colocada perpendicularmente na frente do bico de jateamento.

